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We study a particular utilization of the basis-sphne collocation method (BSCM) for the 
lattice solution of boundary value problems. We demonstrate the implementation of a 
general set of boundary conditions. Among the selected problems are the Schriidinger 
equation in radial coordinates. the Poisson. and the generalized Helmholtz equations in radial 
and three-dimensional Cartesian coordinates. 10 1991 Academic Press, Inc. 

1. INTRODUCTION 

With the advent of computer technology it has now become feasible to perform 
highly accurate calculations for complex problems commonly encountered in 
physics. A class of problems that would greatly benefit from the development of 
new numerical approaches has been recently discussed in Ref. [ 11. Typically, large 
scale calculations in physics involve solutions of complex, non-linear dynamical 
systems on a space-time lattice. Currently, most of these calculations are performed 
using low order finite-difference lattice techniques. Some of the more compute- 
intensive problems contain natural length scales which render the choice of equi- 
distant grid points computationally expensive. For these problems the typical 
discretization involves non-equidistant lattice points which require the development 
of new methods for the accurate representation of the relevant differential operators 
on the lattice. Thus, it is desirable to investigate higher order interpolation methods 
which result in the improvement of the overall accuracy and reduction in the total 
number of lattice points. 

The lattice solution of differential equations may be viewed to proceed in two 
steps: 

(1) Obtain a discrete representation of the functions and operators on the 
lattice. 
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(2) Solve the resulting lattice equations using iterative or elimination 
techniques. 

Step (1) is an approximation problem for which we could take advantage of the 
techniques developed using the basis-spline functicns [2]. The use of the basis- 
spline collocation method (BSCM) for the lattice solution of differential equations 
leads to a matrix-vector representation on the collocation lattice with a metric 
describing the transformation properties of the collocation lattice. In most physical 
applications, equations of motion can be obtained via the variation of the lattice 
representations of the constants of the motion. In this cariatiot3 after discwknkm 

approach, equations of motion exactly preserve the constants of the motion [?]. 
Alternatively, one may use what we will call CO??lifrUOtiS methods which include 

Galerkin [S], Numerov, and other finite-difference methods. Application of these 
methods to bound and scattering problems in physics can be found in [h, S]. Ax 
extensive discussion of the mathematical and numerical properties of splines car. be 
found in [2]. A simple discussion of splines and a comprehensive account of 
iterative methods for the solution of differential equations can be found in [4]. The 

iscussed in this paper have been recently plied to the study of iow- 
vy-ion reactions [S] and to the relativistic irac equation [9, IO]. 

The paper is organized as follows: In Section 2 we describe the general properties 
of basis-splines and the generation of basis-splines and their derivatives, Sectiors, 2 
deals with the BSCM and the implementation of boundary conditions. Section 3 
also contains examples which illustrate typical accuracies obtained for the discrete 
representation of differential operators. In Section 4 we solve the Schrodmger equa- 
tion for the well-known Morse potential using the BSCM. Section 5 develops 
methods for solving the Poisson and generalized Helmholtz equations. These 
calculations are performed in both radial and three-dimensional Cartesian coor- 
dinates. The paper concludes with the discussion of the results in Section 6, 

2. BASIS-SPLINE FUNCTIONS 

The general properties of basis-splines and their utilization for the purposes of 
interpolation and solution of ordinary differential equations is discussed extensively 
in the literature, A comprehensive account of this work can be found in Ref. [2]. 
In this section we will not go through the derivation of formulae concerning the 
generation of basis-splines and their derivatives but rather give a brief description 
of their properties and explain the formulae used in practical calculations. A reader 
already familiar with these details may wish to continue with the next section after 
the following paragraph. 

Given a set of points or knots denoted by the set {.Y;) a basis-spline {B-spline 
denoted by By) function of order M is constructed from continuous piecewise poly- 
nomials of order IIf- 1. B-splines have continuous derivatives up to (&- 2’1th 
derivative and a discontinuous (M - 1 )th derivative With this terminology. a cubic 
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B-spline corresponds to A4 = 4. In the following discussion we will only consider 
odd-order splines or even-order polynomials for reasons related to the choice of the 
collocation points. A typical B-spline of order M is shown in Fig. 1. As we see, the 
ith B-spline is nonzero only in the interval (xi, I. I +M). This property is commonly 
referred to as limited support. The knots are the points where polynomials that 
make up the B-spline join. In the interval containing the tail region B-splines fall 
off very rapidly to zero. 

All of the nonzero splines for a given value of xi d x < xi+ i can be obtained from 
a recursion relation [2] 

where k = 1, . . . . (M- 1). The iteration starts with the initial condition 

for x’~<x<x~+~ 
otherwise. 

(1) 

This recursion relation makes all of the details of constructing B-splines transparent 
to the user in addition to being numerically stable and valid for non-equidistant 
and multiply defined knots. Note that the iteration is not only with respect to 
B-spline index i but also with respect to the order k. One can use the following 
triangular iteration scheme for practical calculations [Z] 

(3) 

So, for a point .ui<x<xi+, there are only A4 nonzero B-splines of order M, given 
in the last column of Eq. (3). In practice, the triangular relation is used by starting 
from the initial condition (2) and going through the columns of Eq. (3). 

The evaluation of various derivatives of B-splines can be obtained from the above 
recursion relation. For xi < x < -vi+ i all B-splines with non-vanishing pth derivative 
can be obtained from 
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X 

FLG. 1. A B-spiine of order M and its extension over the k3oLs .c, , vacua? curve drawn fcr M = 5 1. 

where k = p -+- i, .~., (M- I). However, the initial ccndirion for the recursior: 
relation (4) is itself a recursive expression. Note that the recursion in Eq. (41 cannot 
be started for k < p since SpB” is zero. To find the lower order derivatives cf Power 
order splines we use the recursion relation 

where k = 1, . . . . p and we have defined 

The initial condition for (5) is 

Cf(x)= :, 
i 

for .x~<.x<.Y~+, 
otherwise. 

,? 
: I 

Hn practice, we first calculate and store the lower derivatives using Eq. i 5) and sub 
sequentiy solve for the pth-derivative from Eq. (4). Both of these equations have the 
same structure as Eq. (1) and therefore the same triangular relation is utilized in 
practical caiculations. 

Two other useful relations for B-splines are the summationt 

c @f(x) = 1. 

and the integration over all space, 
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Equations (8) and (9) are generally correct except near the physical boundary, 
where the B-splines may be incomplete (see below). Equation (8) together with the 
fact that B;?(x) > 0 in the interval (xi, x. ,+.ni) makes B-splines a partition of unity. 
B-splines may also be regarded as localized wavepackets having Fourier transforms 
that are sharply peaked about zero momentum [6]. 

3. BSCM AND BOUNDARY CONDITIONS 

In this section we will use the basis-spline collocation method to set up a lattice 
representation of functions and differential operators imposing various boundary 
conditions. The details of Coulomb boundary conditions will be discussed later. 

3.1. Enumeration of B-Splines 

Consider a region of space which has boundaries at X,in and s,,,. Figure 2 
depicts such a region for which we have also drawn some of the B-splines around 
the boundaries. Since the B-splines have an extension over M+ 1 knots, B-splines 
beginning outside but at close proximity of the lower physical boundary will stretch 
into the physical region and B-splines that begin inside of the upper physical 
boundary will stretch beyond. In order to be able to generate all of the non- 
vanishing B-splines within the physical boundaries using Eq. (3) we need extra 
knots, in addition to the knots that are within the boundaries. This knot sequence 
can be defined as 

knot sequence = (x1, x2, . . . . .x,~, -Y.~+ ,, . . . . -Yap,+,,- I, xnftN, . . . . x,$, +2iCf- Ij, (10) 

where xw and x*[ + N correspond to the physical boundaries ,ymin and xmax, respec- 
tively, and xi < xi+ i for i= A& . . . . M+ N. Including the boundary knots the total 
number of knots within the physical boundaries is N + 1. The total number of knots 

B: 

1 2 . . . M M+i - . . N+M N+2M-1 

X 

FIG. 2. A region of space with physical boundaries located at knots x,~, and s,~,+,,,. The B-spline BiW 
which begins at the first knot X, has its tail in the physical region. The last B-spline which begins within 
the physical boundaries is Bi!+ M- 1. It extends up to the last knot x’~+~,,,-,. 
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in the entire sequence is N + 2M - 1. From Fig. 2 we also observe that wit Ais 
knot sequence the splines that fall within the physical boundaries are naturaliy 
numbered as 

q’(x), By(s), ..~) B?+ .pf _ i. [‘I’, 

Consequently, the total number of B-splines that fall within the physical boundaries 
is N+M- 1. 

3.2. Collocation Representation of Functions 

A continuous function f(x), defined in the interval !-~min, ~~~~~~~ can be 
approximated in terms of the B-sphne functions as (using the covariant notation) 

where quantities ci denote the expansion coefficients. Equation (12) defines a sphne 
approximation to the function -f(x) on an interval spanned by the subset of knots. 
In the collocation method, we demand this equation to be satisfied exactly at a se? 
of points {x~) named as data or collocation points. We than calculate the expansion 
coefftcients ci by the inversion of the matrix equation. These coefftcients give exact 
values of the function at the collocation points by construction and provide a good 
interpolant at other values of s. The essence of our method is to transform a dif- 
ferential equation into a matrix equation with operators and functions expressed 
only in terms of these collocation points. The solution of the resulting marrix- 
vector equations will thus give the answer evaluated only on the collocation la::tice. 
There are a number of practical ways to choose co&location points [2]; however, 
for odd-order B-splines an optimal and simple choice is to place one co!locatioc 
point at the center of each knot interval within the physical boundaries 

Note that collocation points are denoted by greek subscripts. We can now wane a 
linear system of equations by evaluating (12) at these collocation points 

where fX = .f(x,), and BXi = By. Using matrix vector notation 

(f).~r=(B),,~‘,(.~+.~4-1,(ej~~r;,~,-- 1, {IS,? 

where we have also indicated the lengths of the vectors and matrices. In order to 

solve for the expansion coefftcients the matrix B nee s to be inverted. However, as 
it stands in (15) matrix B is not a square matrix. In order to achieve this inversion 



432 UMAR ET.AL. 

we need to introduce additional linear equations which represent the boundary con- 
ditions imposed on f(x) at the two boundary points, -x.~ and xLw+ I\,. The essence 
of the lattice method is to eliminate the expansion coefficients ci using this inverse 
matrix. 

3.3. Boundaq~ Conditions 

Before we continue with what we will call fi,xed boundaq~ conditions there is an- 
other type of boundary condition that can be imposed in a straightforward manner, 
the periodic boundary conditions. For periodic boundary conditions the function is 
assumed to be folding across one boundary into the other boundary. The termi- 
nology becomes more clear for dynamic problems where a function impacting one 
boundary-wall will appear to be entering back into the physical region from the 
opposite boundary-wall, thus the name periodic. In this case we form a finite closed 
space and the periodic boundary conditions can be used when boundary conditions 
are not important. In practice, periodic boundary conditions can be simply imposed 
by renumbering B-splines B,, 1, . . . . By+ M- I by B,, . . . . B,,,- i, respectively (without 
changing their location). Thus, B, seems like a B-spline that begins at knot xN+i 
stretches up to the upper physical boundary and its tail folds to form the B, as 
drawn in Fig. 2. Consequently, the B-spline index i will stop at N instead of 
N+ M- 1 and the matrix B of Eq. (15) becomes an N x N matrix which can easily 
be inverted to solve for the expansion coefficients. 

The fixed boundary conditions that we will consider can be cast into the form 

(16) 

where r counts the number of such boundary conditions and the coefficient array 
K is used to select a subset of terms with constant coefficients in the above summa- 
tion. We note that p can be at most M- 1, since the function f(~) is represented 
in terms of Mth-order B-splines. Using (12), Eq. (16) becomes 

(17) 

Finally, in terms of the matrix firi, which is defined to be 

the boundary conditions represented by Eq. (16) can be put into the form 

N + M - I 
c yri2=0. (19) 
i=, 

Equation (19) is in the same form as Eq. (14) and can be joined to form a larger 
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hnear system. This new linear system will not oniy impose the desired boundary 
conditions but for I’ = I, . . . . (M- 1) wit1 also give a square matrix for inversion. 
Alternatively, one may wish to detine few additional collocation poinrs and only the 
desired number of boundary conditions. Specifically, 

If we augment the collocation vector on the left-hand side of Eq. (15) by M - 1 
zeroes, we can solve for the expansion coefficients as 

F&e above choice of collocation points ensures that matrix is non-singular and 
cau be inverted [Zl. However, due to the presence of the zeroes in the cohnnn 
vector only a part of the inverse is required; we denote this section of the inverse 
matrix by 

Thus. the inverse matrix c acts like a metric describing the transformation between 
the collocation points and knots. As we will see below, this inverse will be used 
to generate collocation lattice operators which automatically satisfy the above 
boundary conditions. We also point out that c satisfies the property 

By inserting the expansion coefficients represented by Eq. (21) into (14) and using 
the property (23) one can trivially show that all local functions will have a hocai 
representation in the finite-dimensional collocation space 

3.1. Collocutioil Representation of Qperators 

Consider the action of an operator P onto a functionf(x) 

If we evaluate the above expression at the collocation points X, we can write 

%I 93 2-L: 
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Substituting from Eq. (21) for the coefficients 8, we obtain 

where we have defined the collocation space matrix representation of the operator 
0 by 

0: = c [SB],, CC]? 

Note that the construction of the collocation space operators can be performed 
once and for all at the beginning of a calculation, using only the given knot 
sequence and collocation points. Due to the presence of the inverse in Eq. (28) the 
operator 0 is not a sparse matrix. In practice, operator 0 is chosen to be a differen- 
tial operator such as d/d-y or d’/dx’. In this case the derivatives of B-splines are 
calculated using the recursion relation (4) and are used in Eq. (2X). 

3.5. Collocation Weights 

The appropriate quadrature weights which incorporate the boundary conditions 
can be obtained by integrating both sides of Eq. (12), 

(29) 

In practice, integration limits a and b usually coincide with the boundaries of the 
physical region xdl and x~+,,~, respectively. In this case, for most B-splines the 
integration in Eq. (29) covers the entire extension of the B-spline for which we can 
use Eq. (9) to write 

I= c h,c’. (30) 

However, for B-splines that extend beyond the physical boundary, the integration 
limits will not cover the full extent of the B-spline and the integral in Eq. (29) 
would only give the part of the area that falls within the physical boundaries (for 
example, the area under Biw of Fig. 2). Of course, for periodic boundary conditions 
all B-splines are present in their full extent (due to folding) and Eq. (9) can be used 
for all i with any knot sequence. One way to circumvent an explicit integration of 
the area under the boundary B-splines is to choose multiple knots at both boun- 
daries for fixed boundary conditions. In this case the knot sequence is given by 

knotsequence=(x, ,... ,sx,w,xM+l,xhf+Z . . . . . . x,v+,w--I,xN+Af ,..., t.,v+M), (31) 
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with the total number of knots remaining the same. This knot sequence produces 
the correct area under the boundary B-spiines and Eq. (9) can be used for ail L 

To find the collocation weights we use Eq. (21) to substitute for the expansion 
coet@icients ci in E,q. (30), 

x + M - 1 ., 
I= c 1 lipf. (32; 

i= I I=! 

This allows us to define the collocation integration weights tP together with -he 
quadrature formula, 

3.6. Numerical Illustrations 

In this section we will give numerical examples of the formalism discussed above. 
We will mainly concentrate on problems with fixed boundary condition.s. In par- 
ticular, we will study the action of the first derivative operator on two fuc.ctior,s 

f(x) = sin(x), for Q&X<? 
Eg’I 

f(s) = sin(x) e-“. for 0 < .Y < 20. 

Both of these functions vanish at x=0 and have an oscillatory behavior over the 
physical region. The second function also vanishes at x = ‘x. C)n the other hand, the 
first function has a vanishing first derivative at x = 15x/2 which has to be incor-. 
porated into the boundary conditions. In all of our examples we have tried to use 
a reasonabk E-spline order and number of collocation points. Ht is always possible 
to make relative errors as small as needed by increasing these parameters. 

Knots are chosen at equally spaced intervals within the physical boundaries. 4.1 
each boundary we add (M- 1) multiple knots. Collocation points are located at 
the middle of each knot interval within the physical region. Table I shows the 

TABLE I 

Knot and Col!ocation Sequence for the Case of Order M = 3 and the Number of CoIioca:ion Points 
N= 10. Equally Distributed in the Interval (0. 10) 

Knots 0 0 0 1 2 3 4 5 6 7 S 3 13 10 ic 
c0110c. 0.5 I.5 2.5 3.5 4.5 5.5 6.5 7.5 85 9.5 

Note. There are N+ 2-W - 1 = 15 knots. The knot sequence contaix M- I additionai multiple knots 
at each boundary as discussed in text. 
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values of knots and collocation points for the simple case of M= 3 and N= 10 in 
the physical interval (0, 10). Various boundary conditions can be implemented via 
the coefficient array Krp of Eq. (16). For order M we impose a total of M- 1 
boundary conditions in order to form a square matrix as discussed above. Conse- 
quently, the index Y = 1, . . . . (M- l), and for each I’ the index p can go up to M- 1. 
We divide the boundary conditions equally between left and right boundaries (i.e., 
(M - 1)/2 at each boundary, M being an odd number). For example, to implement 
a zero boundary condition for a function at a particular boundary point we set 
K,,, = 1 and all others to zero. This way of implementing boundary conditions may 
introduce redundant conditions for M> 3. For example, for the M= 5 we need to 
introduce four boundary conditions, two at each end. The first two of these condi- 
tions may correspond to the real physical conditions and the remaining two may 
be redundant. In practice, we have found that requiring some high-order derivatives 
to be zero does not alter the results. For M= 5 case we set the fourth-order 
derivatives to zero at each boundary. Alternatively, one may wish to define extra 
collocation points near the physical boundaries and only one boundary condition 
at each end. 

In Table II we show the error in the difference of the numerical first differentia- 
tion constructed on the collocation lattice and the analytic derivative evaluated at 
the same collocation points for the function sin(x) in the interval (0, 15~/2). The 
error is defined by 

IV 
error = $ C 

g, - cos(x,) 

a=1 cos(x,) ’ 

where 

(35) 

(36) 

TABLE II 

Error (see Eq. (35)) in the First Derivative of the sin(x) Function Computed on the Collocation Lattice 
as a Function of B-spline Order M and the Number of Collocation Points N 

N M=3 M=5 Iv=7 M=9 

10 4.76(-l) 1.93( - 1) 9.42( - 2) 8.39( -2) 
20 7.26( -2) 3.86( -3) 8.63( -4) 1.56( -4) 
30 2.85( -2) 5.84( -4) 7.25( - 5) 9.02(-5) 
50 9.60( -3) 6.53( -5) 6.49( -6) 5.69( - 6) 
80 3.67( -3) 9.46( - 6) 2.22( - 8) 7.29(-9) 

K 2.3 4.7 6.9 7.5 

Noze. The physical region is in the interval (0, 15n/2 j. The last line shows an approximate power law 
dependence, N mK, of the error. 
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The first derivative matrix D is given by (see Eq. (25)) 

where B’ indicates the first derivative of the B-spline ftmctions. We have used the 
above error formula for functions that do not have an exponential behavior. We 
observe the typical improvement as we increase the B-sphne order and the number 
of collocation points. For a few points the improvement with respect to the order 
seems to saturate at M = 7. This saturation will in general depend on the behavior 
of the functions and on the number of collocation points. We would also Like tc 
point out that in the calculations we have imposed the boundary conditions he: 
the function is zero at x = 0 and the first derivative is zero at x = 15ni’2. ii we 
change one of these conditions to a wrong boundary condition, our error for 5s 
best case in the table becomes 0.20, with most of the error originating from points 
close to the boundary with the wrong condition. The last line of Table 11 shows a 
power law dependence of the error. For each order we have fitted the error using 
a two-parameter expression, .4hrp”. We observe that the vaiues of K increase 
rapidly with the increasing B-spline order. 

In Fig. 3 we have plotted the difference / gnumerica’jr:) - ge’ac’(.~)l, where g denotes 
the first derivative of the function sin(x) exp( --xi, as a function. of .Y, Calculations 
employed B-sphnes with order M= 7 and 100 coilocation points. Since we are 
dealing with an exponentially damped function, we have used non-equidistan: 
knots determmed by the transformation 

x = a( ehc - 1 ), ,f ;p ‘: \- , 

FIG. 3. LOgarithIII Of 1 gn"mer'ca' - gexact/. where g denotes the first derivative of the function 
k(x) exp( --I ). as a function of .Y (dotted curve). The solid curve is the iogzrithm of Ig(.u)l. Ca!cu!arion:; 
empioyed B-splices with order .hi = 7 and N = 100 collocation pnints in the physicai interval (0, 40’1. T’le 
non-equidisrant grid used in the calculations is given by Eq. (38). 
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where i denotes an equidistant grid in the interval (0, 1). This transformation leads 
to a knot distribution with a high density of points in the vicinity of the origin and 
widely spaced points in the tail region. In practical calculations we have used 
a = 1.0 and b = 3.3. On the same figure we have also plotted the absolute value of 
the exact derivative to demonstrate the relative accuracy of the result. We have 
imposed zero boundary conditions on both ends of the physical interval. The agree- 
ment in the tail region is very satisfactory considering the fact that we are dealing 
with an exponentially damped oscillatory function on a relatively coarse grid. The 
accuracies obtained for second-order derivatives are commensurate with these 
results. 

4. RADIAL SCHR~~DINGER EQUATION 

In this section we will calculate the bound states of the radial Schrijdinger 
equation (m = h = 1, I = 0), 

for the Morse potential 

V(~)=25[e-4”-3’-2e~2”-3’]. (40) 

In Eq. (39) the wavefunctions @,, satisfy the boundary conditions 

*n(r) -+ 0 for r+O 

tin(p) + 0 for I’ > I’,,,. 
(41) 

The second condition is an approximation to the real asymptotic behavior 
$,Jr) + Ce-“‘. The reasons for choosing this form for the potential is twofold. 
First, the four bound state eigenvalues are known analytically 

E,,= -[5-&z++)]‘, n=O, 1,2,3; (42) 

second, there exists an extensive study of the same potential using the continuous 
methods in the literature [6]. 

Collocation lattice representation of Eq. (39) is obtained by using Eqs. (24) and 
(27). The result is 

; H%, = Edm, (43) 

where 
H[r - +Dt+ Q& 

@+I B[lici! 
(44) 



BASIS-SPLINE COLLOCATION METHOD 439 

The diagonalization of the matrix H will give N eigenvalues, of which the four 
lowest correspond to the bound state energies E,,, and N eigenvectors, each 
evaluated on N collocation points. Alternatively, one can use an iterative scheme to 
find only the lowest four eigenvalues. An efficient damped relaxation method for the 
Schrodinger equation as well as the Dirac equation can be found in Ref, [ 1 I ]. 

In practice, we have chosen an equidistant collocation grid as discussed in the 
previous section in the interval (0, 12). This grid agrees with the one chosen ila 

ef. [ 61. In Table III we tabulate the quantity IE,l - .E~““\! \EtX”“‘j ~ The calcuia- 
tions were carried out for N= 80 collocation points and various B-spline orders _Rs? 
We observe that with increasing M we obtain a substantial improvement t-n 
the lowest three eigenvalues. The last eigenvalue is very loosely bsuskd 

(E, = -0.002525) and dies off at a much larger value of I’,~~. Increasing the value 
of f-max shouid lead to a better representation of this state and improve its energy. 
Another important property is that the Morse potential reaches a very large valus 
at the origin (V(.O) = 4.05 x 106). In principle, we can move the value of 7,in from 
0 to 1.0, where the potential is still quite large and wavefunctions satisfy the zerc 
boundary condition (at one part in loo- lo level). This should also lead to a3 
improvement in the eigenvalues since more of the collocation points will be located 
in the region where wavefunctions are appreciably different fro zero. In order to 
test these conjectures we have investigated a non-equidistant grid that t,vas 
generated by first mapping the zeroes of Legendre polynomials from the her-va; 
(-- I, + 1) to the interval (I?,~“, y,,,), with yrnin = 2 arc tan(r,,).ii-r and ~3,~~~ = 
2 arc tan(r max)/n. These points were then used in the trarrsformation I’~ = tan(x,-A$: 1. 
This transformation results in a large density of points near ymir, and widely spaced 
points at far distances The last line of Table III shows the results for M= 7 and 54 
transformed Gauss points in the physical interval (1% 34). We note a substanteal 

TABLE III 
Error, IE,, --E~l!]E~l, for the Eigervaiues of the 

Morse Potential 

il 

M 
0 

3 2.91 - 3) !7( -2) h.!( -2: 9.9 
5 23 ~4) 1.6( -~ 3) 6.5(-~3) 5.3 
7 1.7(-5) 1.2( -41 5.Z( -4 i 4.; 
9 1.61 -6) l.l(-5) j.;(--5) 4.7 

7” 5.4 -8; 1.61-5) i.3! -4) 3.9( - 1) 

Ncte. The calculations are performed with 80 
collocation points and for various B-splmes order KI. 
The physical region is in the interval (0, 12). 

n Calculated by using 64 points nith the non-equi- 
distant transformation described in text. The physic2 
interval is (1, 24). 
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improvement in the results (in comparison to the M= 7 case), considering also the 
fact that the physical interval has almost doubled and the number of collocation 
points are reduced to 64. In comparison to the M= 9 case, the states with rz = 0 and 
3 show an improvement but not the states with IZ = 1 and 2. This is due to the fact 
that the number of collocation points have been reduced from 80 to 64 in case 7a 
and the points are distributed in a non-equidistant fashion, with most points con- 
centrating in a region where the n = 0 state extends. The states 12 = 1 and 2 are 
spread over a larger region and the total number of points in that region is less 
than the BO-point case. The n = 3 case can only be improved by extending the value 
of rman to ensure that the wavefunction becomes very small at that value. So the 
improvement is mainly due to the large value of I’,,,=~ used in the case 7~. 

Our results are in general agreement with those of Ref. [6] where cubic B-splines 
were utilized. Reference [6] also contains calculations using second-order linite- 
difference and Numerov algorithms which clearly demonstrate the improvement 
of the results due to the use of B-spline approximations. 

5. POISSON AND GENERALIZED HELMHOLTZ EQUATIONS 

In this section we will provide a method for implementing Coulomb boundary 
conditions using the BSCM method. The methodology discussed here can be 
generalized to any differential equation with arbitrary boundary conditions which 
may or may not be equal to zero. 

We are interested in the solution of the two well-known differential equations, 
namely the Poisson, 

V’@,(r) = -47cp(r), 

and the generalized Helmholtz, 

(V’-a’) Qy(r) = -4np(r). 

The formal solution for the Poisson and Helmholtz equations can be written in 
terms of the corresponding Green’s functions as 

Qc(r) = 1 d3r’ f$$ Poisson 

@ y(r) = 1 d3r’p(r’) ‘G Helmholtz. 

However, the three-dimensional integrations are quite difficult and in practice one 
usually solves the corresponding differential equations. Equations (45) and (46) 
have different boundary conditions, which is also apparent from the asymptotic 
behavior of the solutions given in Eqs. (47). The Poisson equation has to be solved 
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by specifying the values of QC at the boundaries since the solution is finite there. 
0n the other hand, for reasonably large distances, QY can be considered zere and 
we simply have to implement a zero boundary condition as discussed ~II ;he 
previous sections. Since the two equations are similar, except for the bou~~dary 
conditions, below we will only deal with the Poisson equation. The calculations for 
the Helmholtz equation will also be discussed at the cad of each subsection. 

For a sphericaliy symmetric density p and potential @, the Poisson equation :a- 
be reduced to the form 

The solution d(r) is zero at r= 0 by virtue of Eq. (48‘1, and it has a finite z’aiue a 
) mlT . d(r) can be expanded in terms of B-spline functions as before. 

Evaluating Eq. (49) at the collocation points r, gives us the incomplete Linear 
system of equations 

This system of equations has to be supplemented by linear equations describing the 
boundary conditions. These equations can be cast into the form 

where dii denotes the knolls values of the solution at the bo~zdcl~)~ poinu: and B,; 
are the B-splines evaluated at these boundary points. The solutions dh are mos: 
commonly obtained by making a multipole expansion of the formal solution (47) 
at distant boundary points. The details of this expansion are given in the czxt 
section. If we choose A4 - 1 such boundary points, Eqs. (51) can be appended to 
Eqs. (50) to form a square system which can be inverted to solve for the expansion 
coefficients 2. The new system can be written as 
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where 

(53) 

The inversion of Eq. (52) gives 

LV + A4 ~ 1 
ci, C (B-l)imzb,. (54) 

m=l 

Expansion coefficients ci can be substituted into the Poisson equation written in 
terms of the B-spline expansion on the collocation lattice 

to give 

iW 

Here pm - p(r,) and the sum over m runs over the full range, t?z = 1, . . . . N + M - 1. 
However, in Eq. (56) the values of d,,, at the boundary points are known quantities, 
thus the summation over ~2 can be divided into two parts 

The right-hand side of Eq. (57) are all known quantities evaluated at the colloca- 
tion and boundary points and the second term acts like an image charge to fix the 
appropriate boundary conditions. 

In practice, we have used N equidistant collocation points in the interval 
(0, r ,,,). In addition, we have selected M- 1 boundary points. half between r = 0 
and the first collocation point and the other half between the last collocation point 
and r,,,. These boundary points included r = 0 and r = rmax. The solution 4 is zero 
at r = 0 and was explicitly calculated at the other boundary points using either a 
multipole expansion or known analytic values as discussed in the example below. 
The N x N matrix D was inverted to solve for dp in Eq. (57). In Table IV we 
tabulate the error as a function of the number of collocation points N using 
B-splines of order live and density (normalized to unity) 
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TABLE IV 

Torah Error (see Eq. (35)) in the Solution of the Poisson Equation in Radial 
Coordinates as a Function of the Number of Collocation Points hi 

iv 10 20 30 40 50 60 

4.X( -4j 3.3i - 5 J 6.4( -6) 1.5( --6) 7.6( -7: x5( -7; 

,Vooie. We have used a fixed B-spline order M= 5. Physicai region is in 
the interval (0, 61. 

In this case the analytic solution is given by 

The reason why order five is adequate is due to the behavior of the solutions oi the 
Poisson equation. In general, the solutions are smooth and fall off slowly at iarge 
i-(Gc(r) + l/r, d(r) -+ 1). Increasing the order may still improve the results. Aiso, at 
the boundary the exact value of the function calculated by an asymptotic expansion 
is used. Due to this and the relative constancy of the solutions over the region of 
1’ values considered, equally spaced points are the best choice. 

The solution of the Helmholtz equation only requires the implementation of a 
zero boundary condition at r = 0 and r = r,,,. In this case: 

-1 c--F --- 

FIG. 4. Logarithm of Ip”mcrical ~- @ekac[ (, for the Helmholtz equation as a function of the radial coo:- 
dinate I’ (dotted curve). The solid curve is the logarithm of @l(r) Caicuhttons employed B-sphnes :vith 
order Al= 5 and N- 100 collocation points in the physical interval (0, 20). Tke non-equidistan: grid 
used in the calculations is given by Eq. (38j. 
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where the second derivative matrix D is calculated using the fixed boundary condi- 
tions discussed in the previous sections. In Fig. 4 we show the error in the solution 
of Eq. (60) for the same spherical density used for the Poisson equation. The 
analytic solution for the Helmholtz equation is given by 

d(r) = (1 Jo232 {e-“‘-e-“[l +i(1 -ul)r]). (61) 

We have used B-splines of order live and 100 collocation points distributed accord- 
ing to the transformation given by Eq. (38). The solid curve is the logarithm of the 
analytic solution, whereas the dotted curve denotes the logarithm of the difference 
I@ numerical - Qexact). We observe for both Poisson and Helmholtz equations that 
very reliable solutions are obtained with relatively low order B-splines and few 
collocation points. 

5.2. Three-Dimensional Equations 

The methods described in the context of the radial Poisson equation can be easily 
generalized to three dimensions. In Cartesian coordinates the Poisson equation is 
given by 

a2cD S2@ d2@ 
2 + @ + 2 = - 47va Y> --h 

The potential @(x, y, Z) can be expanded in terms of the B-spline basis as 

(62) 

@(X, y, Z) =I Bj(X) Bj(J) Bk(i) Cvk, (63) 
ijh 

where we have assumed that all B-splines are of order A4 (they can have different 
orders) and the indices i, j. k correspond to B-splines in X, ~1, z directions. respec- 
tively. Inserting Eq. (63) into (62) and evaluating the expression at a set of colloca- 
tion points denoted by subscripts a, fi, ?I’, we obtain 

C CBZBgjByk + B,iBijBisk + BaiBpjBik] c’jk = -4xp,,,.. 
ijk 

Here, like i, j, k, the indices c1,fi, y correspond to the collocation points in x, 4: Z, 
directions, respectively. As it stands, we cannot solve for the expansion coefficients 
C iik since the three B-matrices are not square matrices. The generalization for intro- 
ducing boundary potentials can be achieved if we consider the following expansion 
for the potential 

In this expression the indices m, n, p not only include the collocation points but 
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aiso a set of extra boundary points. Specifically. in each dimension we choose an 
additional set of boundary points in exactly the same way for the radial equation. 

owever, in the three-dimensional case these extra boundary points lead to the 
specification of the boundary potentials on the surfaces of the cube, This is 
apparent from Eq. (65) if one considers one of the points, say no, to be a boundary 
point. In this case, the other two indices II, p correspond to ail possible collocation 
points in J’~ z directions. This describes a surface for which the exact potential 
values need to be calculated. If n, p correspond to boundary points, we represent 
the corners and lines joining the corners of the cube. Fn-raliy, i~r M> 3 we choose 
more than one point at each side of the Cartesian. axis: in this case we have :c 
specify boundary potentials at adjacent surfaces of the cube, 

In Eq. (65) all of the B-matrices are square and they can be inverted to solve for 
the expansion coefficients cVk, 

Substitution of Eq. (66) into the Poisson equation (63) and making use of the 
relation 

yields the collocation lattice representation of the Poisson equation 

where the points a, 6, c denote the boundary points in X, ~9, z directions, respec- 
tively. The detinition of the second derivative matrix is given by Eq. (56). The 
boundaryy potentials needed for the right hand side of Eq. (68) are calculated by 
using an asymptotic expansion of the denominator in Eq. (L/7)> 

here Y $ Y’, i.e., no density on the boundary. We have kept the expansion up tc zhe 
fourth order including all of the odd moments. 

Equation (68) is in the form A. CD = b. However, in this case the dimensions of 
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matrix A can be very large and iterative algorithms become more suitable for the 
solution of the linear system. We have used the conjugate gradient algorithm 

r,=b-A.@,, 

PO = ro 

do for i = 0, 1, 2, . . . until convergence 

at= (ri, ri)/(Pi, APi) 

qtl=aJi+ctipi 

‘i+l = ri - aiApi 

Bi+l=(ri+,,ri+l)/(ri,ri) 

Pi+ r=‘i+r+Pi+rPi 

end do. 

The residual was required to satisfy the condition llrJ[ < 10-r’ for convergence. As 
the initial guess for CD we have used the potential of a uniform charge distribution. 

Table V illustrates the three-dimensional results for the Poisson equation. In 
calculations we have used B-splines of order M= 5 and a different number of 
equidistant collocation points distributed in the physical interval (- 12, + 12) in 
each Cartesian dimension. We compare the total electrostatic energy 

with the analytic value of 5/16. This quantity also incorporates the errors arising 
from the three-dimensional volume integral. The number of iterations required for 
the convergence of the conjugate gradient method is slowest for the N= (50)3 case 
(126 iterations). 

We have also used the same algorithms for the solution of the Helmholtz equa- 
tion with accuracies that are somewhat better than the Poisson equation. In this 

TABLE V 

The Error, I/?, -0.3125~/0.3125, in the Total Electrostatic 
Energy (70) for the Solution of the Poisson Equation in 

Three-Dimensional Cartesian Coordinates. 

N (lo? (20)) (30j3 (40 j3 (50)’ 

4.2(--2) 4.5( -3) 8.3( -4) 1.6(-4) 3.1(-5) 

Note. The results are given as a function of the number of 
collocation points for a fixed B-spline order M= 5. The physi- 
cal region is in the interval ( - 12, + 12) in each dimension. 
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case the conjugate gradient iteration takes only 15 iterations for convergence: This 
is due to the intrinsic difference in the behavior of the solutions for the Poisson and 
Helmholtz equations (long-range vs finite-range). However, in practical calculations 
such as the nuclear and atomic HartreeeFock studies, where the self-consistent 
equations are solved iteratively, one can use the previous solution as an initial guess 
for the next step. In this case the number of subsequent iterations rapidly decreases. 

6. SUMMARY AND D~SCUSSIDN 

We have developed a methodology for the lattice solution of the boundary value 
differential equations using the basis-spline collocation method. A large class or’ 
problems in physics which currently employ low order finite-difference techniques 
can benefit by exploiting higher order interpolation methods such as the 
We have given a number of examples of the method which demonstr 
implementation of various types of boundary conditions. In most appli 
lattice equations can be written in terms of matrix-vector operations. In 
matrix representation of operators are not sparse and require a larger computa- 
tional effort. On the other hand, conli~ruous methods such as the Galerkin method 
using B-splines, result in a system of generalized linear equations with, bacded 
matrices. The stability of these equations and their potential use for the study of 
complex dynamical systems using higher order B-splines remains for investigation, 
For the calculations performed in this manuscript we have developed a library of 
fortran subroutines called BSLIB. This library inciudes all of the basic B-spline and 
derivative generation routines for fixed or periodic boundary conditions and is 
available from the authors. 
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